
Tagion Technical Concept Paper

Theis Simonsen
ts@decard.io

Carsten B. Rasmussen
cr@decard.io

Coauthor:
Benjamin Hilton
bbh22@cam.ac.uk

March 19, 2024

Original Version: August 1, 2018

Abstract

This paper describes the implementation of a Distributed Ledger Technology (DLT)-
system which solves the 3 aspects of the trilemma better than any current system.
The system distinguishes itself technically in 4 key ways: The consensus protocol, the data
storage method, the swapping algorithm, and its use of time-based staking. The system uses
the Hashgraph algorithm as its asynchronous Byzantine Fault Tolerant (aBFT) consensus
protocol. The protocol’s asymptotic communication complexity is quadratic (theoretically
optimal), making the effective throughput of the system significantly greater than blockchain
alternatives. Moreover, the protocol has deterministic finality, enabling the system to order
activity and transfer the byzantine proof to the storage layer. Finality also greatly enhances
the scalability of the system, when combined with the second distinguishing feature: The
DART. The Distributed Archive of Random Transactions (DART) saves data in a hash
invariant database, allowing the system to be stateless. Lastly, the system uses swapping to
achieve decentralisation, while maintaining security by using time-based staking. Tagion
isn’t just another DLT; it’s a fundamentally new infrastructure that is scalable, secure,
decentralised, fair, and sustainable.

1

Contents

1 Introduction 3
1.1 Misconceptions about Distributed Ledgers . 4

2 The Atomic Broadcast Protocol 5
2.1 The Hashgraph . 5

2.1.1 Gossip about gossip . 5
2.1.2 Byzantine Fault Tolerance . 6

2.2 Fair Ordering . 6
2.3 The Wavefront Protocol . 7
2.4 Communication Complexity . 8

3 Scalability 9
3.1 Writing Information . 9
3.2 Reading Information . 9

3.2.1 The Problem with Blockchain Systems . 9
3.2.2 The Hashgraph’s Solution - Finality . 9
3.2.3 Using Finality to Achieve Read-scalability 9

3.3 DART . 10
3.3.1 Structure . 10
3.3.2 State of the System . 11

3.4 A Stateless Scalable System . 12

4 Decentralisation 13
4.1 Node Pools . 13
4.2 Swapping . 13
4.3 A Permissionless System . 14

5 Security 15
5.1 Time-Based Staking . 15
5.2 Time and Amount . 15
5.3 Staking Rewards . 16
5.4 Sybil Attacks . 17
5.5 Byzantine Fault Tolerance . 17

6 System Architecture and Incentive Structure 18
6.1 Tagion from a User Perspective . 18
6.2 Node POV: Receiving Information . 19
6.3 Node POV: Epoch and Consensus . 20
6.4 Comparison to Blockchain Systems . 20

2

1 Introduction

The landscape of Distributed Ledger Technology (DLT)-systems is continuously growing. Al-
though most systems share notable similarities, they often differ in their prioritisation of the
trilemma: How to achieve scalability, decentralisation, and security. ”The scalability trilemma
stands in the way of blockchain [DLT] fulfilling its potential as a technology to change the
world”[2]. Most blockchains are secure and decentralised but lack scalability. In contrast, layer-
two systems prioritise scalability, but in doing so lose the byzantine proof and thus their security.
Other systems choose a leader-based system achieving both security and scalability but losing
the decentralisation by choosing a single leader. Tagion is a DLT-system that makes none of
these compromises, and claims to solve the trilemma better than any current system.

Many other systems which claim to solve the trilemma make idealised assumptions about the
network: maximum response times, trusting a single leader, unlimited bandwidth, or are simply
infeasible to implement in practice. Tagion makes none of these assumptions. Tagion is asyn-
chronous, leaderless, has asymptotically minimal message complexity, and can be implemented
in practice as this paper describes.

Tagion distinguishes itself from other systems in 4 key ways; the most fundamental one being
the asynchronous Byzantine Fault Tolerant (aBFT) protocol it is built upon - the Hashgraph
algorithm. By basing Tagion on the Hashgraph algorithm Tagion solves the trilemma in a way
not possible in blockchain systems. While this consensus protocol has many advantages, it does
not fully solve the trilemma by itself. On its own, it’s a permissioned system with no fast way
for computers outside the Hashgraph to read information; so neither scalable nor decentralised.
Therefore, Tagion has built solutions around the Hashgraph algorithm to utilise its advantages
and rectify its weaknesses.

These solutions are Tagion’s 3 other unique features: the Distributed Archive of Random
Transactions (DART), swapping, and time-based staking. Each feature enhances the Hashgraph
to achieve a specific part of the trilemma. The next section describes the Hashgraph in its atomic
broadcast protocol, the foundation for solving all 3 parts of the trilemma. The following 3 sections
outline how Tagion achieves each part of the trilemma using its unique features: Scalability
with the DART, decentralisation through swapping, and security via time-based staking.

Figure 1: How Tagion uses its 4 distinguishing features to solve the trilemma.

3

1.1 Misconceptions about Distributed Ledgers

This paper describes the implementation of a generic DLT-system supporting its native Tagion
tokens (TGN). It does not focus on a specific usage of the DLT-system. The definition of DLT is
evolving and many distinct definitions are present. We adopt the definition of the term ”’ledger’
to mean the set of records which are held in common by a substantial proportion of network
participants” [4]. A distributed ledger is thus a set of records shared between participants in
a distributed system, regardless of the purpose and use-cases of the records. Some narrow the
definition down to fit their needs, for example to an account-based system storing the history
of transactions, but this is neither generic nor constructive [4]. Tagion is a DLT-system: A
distributed, decentralised system agreeing on a common ledger, containing records of arbitrary
content. Furthermore, the Tagion system contains records of the current ownership of TGN,
with a protocol that prevents double-spending of these tokens.

4

2 The Atomic Broadcast Protocol

The fundamental thing that makes Tagion stand out is its usage of a Hashgraph as the aBFT
consensus algorithm, invented by Leemon Baird [1]. The following section gives a brief overview
of how the Tagion utilizes the Hashgraph, to build an Atomic Broadcast Protocol (ABP).

2.1 The Hashgraph

The Hashgraph consists of a fixed number of nodes communicating with each other to reach
consensus on the ordering of events. Information (such as a transaction) can enter the system
through any node. Nodes continuously and randomly communicate with other nodes telling
them all the information they do not have; in this way information propagates throughout the
network. All shared information is signed by nodes, so a node cannot deceitfully lie about what
other nodes have said.

2.1.1 Gossip about gossip

Apart from just gossiping information to each other, nodes also share the complete history of
gossip - who talked to whom in what order. All nodes gossip about the history of gossip. Thus
every node eventually learns of the complete history of communication; even for nodes they never
directly communicated with. Every node locally stores the history of hashed communication in
a graph - the Hashgraph.

Figure 2: An example of the Hashgraph stored locally by a node. The transparent lines and
circles represent events the local node is not yet aware of.

Above is a diagram showing an example of a Hashgraph stored locally by a node. Each
vertical line represents a computer node and each circle an event: Some information entering

5

the system or being shared. The diagonal lines connecting events represent a node gossiping to
another, that is, sharing the history of communication the other did not already know. It is
important to note that this is not all the gossip happening in the network, just the gossip that
our local computer node is aware of because other nodes have gossiped about it. The transparent
lines and circles are gossip our local node is not yet aware of because no node has gossiped the
information to it. This information is not yet saved in the local Hashgraph. So every node’s local
Hashgraph will differ at the top of the Hashgraph (no node is aware of all the newest gossip),
but with time, all gossip will be added to every local Hashgraph.

2.1.2 Byzantine Fault Tolerance

The Hashgraph consensus protocol reaches byzantine agreement on the ordering of events. This
protocol is aBFT, meaning that it makes no assumptions about communication delay and is
tolerant of up to 1

3 byzantine failures. So, even in scenarios with arbitrarily long communication
delays and 1

3 of the nodes sending contradictory information to disrupt the network, the system
would continue to function. This makes the system very robust even under extreme circumstances
which is essential in decentralised, distributed systems. A protocol where every node eventually
agrees on the ordering of information is called an Atomic Broadcast Protocol (ABP). Tagion uses
the original Hashgraph protocol described by Leemon Baird to reach consensus, but differs in
how it implements the ABP on top. The following 2 sections describes Tagion implements a new,
fairer way to order events, and a way to send information, to achieve minimal communication
complexity.

2.2 Fair Ordering

Tagion uses the Hashgraph to order all information passing through the system. The Hashgraph
doesn’t just reach byzantine agreement on event ordering; it is constructed around how to ensure
a genuinely fair ordering of events. But what is a fair ordering? A naive approach would be to
say the information is ordered according to the moment the information was added to any node.
This would be problematic if a node doesn’t share the event for a long time: When it finally
shares it the network would have to insert it in the past potentially invalidating information
added since. A fairer approach is to order an event according to when the network as a whole
knows of the event. The Hashgraph does this through famous witnesses. A node is defined to
become a witness 1 if it is communicating actively in the network and has received messages from
most of the network recently. A witness further becomes famous, if it shortly afterwards has sent
messages to most of the network. A node thus both needs to talk and listen to become a famous
witness. Tagion uses these famous witnesses to represent the network as a whole. If the network
is running efficiently every node will be a famous witness. An event is then ordered according to
the average point of when the famous witnesses first learned of this event. Abstractly, an event
is ordered according to the average point that the network as a whole heard of the event. Not
only does the Hashgraph order all events in the network tolerant to byzantine failures; it also
does this in a fair way. 2

1It is actually a specific event from a node which is defined to be a witness event. For a technically precise
definition we refer to: [1]

2For a more precise and technical definition of famous, witness, and ordering we refer to our documentation
and the SWIRLDS Hashgraph paper

6

2.3 The Wavefront Protocol

So far, we have described nodes gossiping the history of communication the other doesn’t know.
Sending exactly what the other doesn’t know is a technically difficult task. A simple solution is
to simply send all information, but this would result in much duplicate information being shared
across the network. This would greatly increase the communication complexity and become
a bottleneck for the system. Tagion achieves this, while maintaining a asymptotic quadratic
communication complexity which is the theoretical minimum, by using its Wavefront Protocol.

The Wavefront Protocol is used to exchange information between two nodes ensuring the
minimal amount of overhead communication. Each created event has an altitude one higher
than the one below it. Thus the altitude can unambiguously refer to a specific event by a certain
node. Each node encodes the information it knows into a wave; the newest event it locally
knows from each other node. The wavefront doesn’t contain the newest information but rather
numbers, the altitudes of the events representing it. By receiving the wavefront of another node
you know exactly what it knows and can send just the right amount of information to the node.
In the diagram below, node A and node B each have some amount of the newest gossip in their
local Hashgraph. They each have a wavefront just covering all the events they locally know of.
The Wavefront Protocol has three states: tidal wave, first wave, and second wave.

Figure 3: How the Wavefront Protocol works. Node A and B each has a wavefront representing
what they know. By sharing and comparing their waves they can send exactly what is necessary.

1. Node A selects random Node B and sends its wavefront representing what it knows. This
is called a tidalwave.

2. Node B receives a tidal wave from Node A, representing exactly what A knows. Node B
compares its own wavefront with the tidal wave from node A, and sends back all events
which are in front of the wave of Node A; that is, tell node A exactly all information it

7

does not know already. This is called a first wave.

3. Node A receives a first wave from Node B and saves all the new information to its local
Hashgraph. Reasoning from the information node B sent, node A can deduce the wavefront
of node B. Node A then compares its own wavefront with the wavefront of node B. It then
sends node B with a second wave, sending all the information node B did not know already.
Node B saves all of these to its local Hashgraph.

2.4 Communication Complexity

The Wavefront Protocol allows node A and node B to share exactly what is necessary and (al-
most) nothing else. Since Tagion is an asynchronous system delays can cause conflicting states
to occur, which is fixed by nodes sending a breaking wave resetting the states. Delays can, in
theory, also cause duplicate information to be sent, but this would rarely occur in practise. The
Wavefront Protocol thus allows the Hashgraph protocol to be very close to the theoretically min-
imal communication complexity. The only overhead information that the Hashgraph shares is
the tidal waves, signatures, breaking waves, and occasional duplicate information; all negligible
compared to the actual information flowing through the system. As the network increases in size
and throughput, the overhead becomes insignificant, achieving asymptotically optimal commu-
nication complexity. This allows Tagion to efficiently reach agreement and write information to
the system. The next section describes how Tagion efficiently reads information from the system
to achieve scalability.

8

3 Scalability

The following section describes how Tagion achieves scalability. A Hashgraph allows the system
to add information quickly and with minimal communication. To read data, Tagion utilises the
deterministic finality of the Hashgraph to make the system stateless. To do this efficiently Tagion
uses the DART.

3.1 Writing Information

As mentioned in the previous chapter, the Hashgraph sends close to the minimum amount of
information necessary. This reduces the possibility of communication bandwidth becoming the
bottleneck of the system. This, in combination with the Hashgraph consisting of a fixed number
of nodes, allows both consensus and ordering to happen with great speed - much greater than in
any decentralised blockchain. In total, it is fast to write data into the system.

3.2 Reading Information

A system which reaches agreement fast does little good if it cannot communicate what it has
agreed upon effectively. We discuss the limits of blockchain systems and how the Hashgraph
overcomes these by using the DART and deterministic finality.

3.2.1 The Problem with Blockchain Systems

For blockchains to be fast, forking must happen often, resulting in one not being able to blindly
trust the newest broadcasted block. A node wanting to read the state of the system must
continually decide which blocks to trust and which to disregard, so significant effort is required
to read the system’s current state. Probabilistic finality is at the heart of this problem: A
blockchain never becomes fully confident that a state will be accepted in the network, only more
and more confident with time. Either new states are broadcasted often enough that there is doubt
about the validity of the state (forking), or rarely enough that it limits the system’s speed. The
FLP-theorem[3] proves that no aBFT system can achieve liveness and finality; said differently,
no aBFT system can ensure progress while simultaneously achieving finality (a guarantee that
progress will not be overridden). Thus, blockchains cannot achieve finality - it is mathematically
impossible. This lack of finality limits the system’s scalability.

3.2.2 The Hashgraph’s Solution - Finality

The Hashgraph as a consensus protocol prioritises finality above liveness. Initially, it might
sound problematic that Tagion cannot be sure of progress, but it can, in fact, be certain that
progress eventually happens with a 100% probability. Instead of being certain of progress and
probabilistically sure it will not be changed (like blockchains), Tagion is probabilistically sure of
progress and certain it will not be changed. Having finality comes with significant benefits:

3.2.3 Using Finality to Achieve Read-scalability

Having finality in the Tagion system allows for scalability in a way not possible in systems
without it. When nodes in the Tagion network agree on a new state of the system, they push
it to all listeners along with a signature from all nodes. Due to finality, all nodes can trust
the broadcasted state just by verifying the signature. This makes the system stateless, meaning
that any node only needs to remember the current state of the system. This is in contrast

9

to blockchain systems where the history of states defines the consensus; making it a necessity
to store the history of the system. This increases hardware requirements to participate in the
system, resulting in centralisation as a side effect. Since Tagion is stateless, it avoids these
problems. It is thus easy to read the state of the system if we have an efficient and effective
way to continuously verify the broadcasted signed states. To do this Tagion uses the DART, a
database which retains the byzantine proof from the consensus layer.

3.3 DART

The DART is how Tagion stores the data in the network. The DART handles removal and
addition of data, and computing the bullseye to represent a signature of the system. The main
problem the DART solves, is fast recomputation of the bullseye after some parts of the database
changes.

3.3.1 Structure

The DART is a database storing archives, a flexible data structure that can hold different types
of files. At its core, the DART is a Distributed Hash Table (DHT), which means that archives are
stored based on its hash-key. The hash of an archive thus determines where the archive is stored.
The database can be represented as a circular structure: A dart-board with branches of data
growing from the center. The more archives that are stored in the system, the more branches
the DART creates. The following describes the DART through the proceeding example3.

3For explanatory purposes, the example shows the DART with rim 1, 2, and 3. In practise, the first 2 rims are
kept clear of archives and store only branches, and the DART also contains many more rims. The shown hashes
are also 6 hexadecimals long, where as real hashes are 64 hexadecimals long.

10

Figure 4: The structure of the DART database

The DART consists of multiple rims, the number of rims increasing with the total number of
archives. The first 2 hexadecimals of the archive’s hash determines where in rim 1 it is stored.
If the first 2 hexadecimals are unique (e.g. C3 or B1 on the figure) this archive is stored at rim
1. On the other hand, if multiple archives share the first 2 hexadecimals of their hash (e.g. A3),
then the dart creates a branch at A3 and stores this data on the next rim (e.g. A3-CD-14 and
A3-C1-51). If multiple archives also share the third and fourth hexadecimal we create a further
branch (e.g. DC). Each branch has at most 256 combined archives and subbranches. The DART
adds and removes data in a way that ensures that the DART always has the minimum number of
branches and rims. The more rims in the DART the more compute it takes to retrieve data, so it
is essential to keep the number of rims minimal. The DART can maximally store 32 rims; using
just 29 of these it could store every atom in the Milky Way in individual archives. So, storage
capacity of the DART will never become a problem. Tagion also uses the DART to generate
Unpredictable Deterministic Random (UDR) data, used to agree on truly random choices.

3.3.2 State of the System

The reason for using this structure is that it makes recomputing the signature of the system,
the bullseye, very efficient. The DART can be viewed as a Sparse Merkle Tree (SMT). Each
branch computes its hash based on all the hashes of its subbranches/archives (of which there are
up to 256). To compute the bullseye, one needs to compute the hashes from the outermost rim
and compute hashes inwards until one reaches the innermost rim: The bullseye. In the provided
example one would first compute the hash of the archives in rim 3. Then we would compute the
hash of the archives in rim 2, where the hash of branch DC is computed by combining the hash
of A3 DC 17 and A3 DC 54. Finally it computes the hash of archives in rim 1 (where the hash
of branch A3 is based on the hashes of branch DC, archive A3 CD 14, and archive A3 C1 F1),
and then combines these to the bullseye. During the computation of the bullseye, one saves the

11

calculated hashes. This is the crucial step which allows the DART to recomputate the bullseye
quickly. When the DART changes and one needs to compute a new bullseye, it is only necessary
to recompute the hashes of the branches which changed, which will be a tiny fraction of the
system in practise. For example, consider if only the archive B1-A1-23 changes. Computing the
bullseye only requires hashing this single archive and combining rim 1 to get the bullseye, since
all other hashes are saved from the last bullseye calculation. In this way one can continuously,
efficiently calculate the bullseye: A signature of the entire system.

3.4 A Stateless Scalable System

Once consensus is reached in the Tagion system, nodes broadcast the state and its signed bullseye.
Passive nodes, or any individual wanting to know the state of the system, can subscribe to
these broadcasts. Using the DART, receivers can verify the bullseye quickly, with minimal
computation. This results in a stateless system where we don’t need to save previous states of
the system. This allows for deletion of data (as we don’t need to store data from a previous
state) and results in storing less data overall. Not only does this make the system scalable, it
also decreases the hardware requirements for participating in the network. Thus, the barrier to
participate in the system is lower, increasing the degree of decentralisation. It is important to
note that our system is open to the possibility of storing past states. This might be important for
some actors who want to use the full history. In practise few nodes would store the entire history,
while most nodes would only maintain the current state. In blockchain systems one is forced to
save the history; in the Tagion system one has the option of saving it only if deemed necessary. In
the next section we discuss how Tagion utilises swapping to achieve a fully decentralised system.

12

4 Decentralisation

So far the system we have described might appear very centralised: we have a fixed number of
nodes gossiping to decide the state of the network. This is a permissioned system, no one can join
the network without permission. To decentralise the network, it is essential to make the system
permissionless allowing anyone to join the network. To achieve this, Tagion uses swapping to
dynamically rotate nodes in and out of the Hashgraph.

4.1 Node Pools

To ensure scalability as the system grows, Tagion maintains a constant number of nodes in the
Hashgraph. While such a network consisting of a fixed set of nodes offer greater decentrali-
sation than standard systems, it can never claim true decentralisation. True decentralisation
eliminates central points of control, distributing power across a continuously changing network
of participants. The network thus needs to be permissionless. Rather than adjusting the size of
the Hashgraph as nodes want to join and leave the network, Tagion employs the notion of an
active and a passive pool. The active pool is of constant size, and it is purely nodes within this
pool that participate in the Hashgraph consensus protocol. In contrast, the passive pool does
not influence the consensus, and dynamically adjusts in size to accommodate nodes joining or
leaving the system. The passive pool allows a permissionless way to join the network.

Figure 5: Tagion is made up of 2 pools: an active pool of constant size where the consensus
protocol takes place, and a passive pool of dynamic size.

4.2 Swapping

As the network runs, Tagion continuously swaps nodes between the active and the passive pool.
A random node from the active pool is swapped with a random one from the passive pool after a

13

fixed number of rounds (e.g. every 10th round). The DART is used to agree on an Unpredictable
Deterministic Random (UDR) choice. Optimally, nodes would have a precise agreement on when
swapping occurs. But, due to the asynchronicity of the network, this cannot be guaranteed. If
any node is significantly far behind the rest of the network, it might still receive messages from
a node that the others have determined to be swapped out. The active pool is thus a local
property, which might differ between nodes, though this would occur rarely in practise and for
short durations. From a technical standpoint, leaving the active pool is straightforward, while
joining is a slightly more complicated process. In rounds where a swap occurs, the nodes save
the new active pool, and a set of foundations events in the DART. A joining node thus has a
foundation it can built its own local Hashgraph on top of, and will quickly catch up to the rest
of the active pool. The precise details for how nodes are randomly chosen to be swapped is
described in section 5. Security.

4.3 A Permissionless System

In summary, to avoid power accumulating on a small set of nodes, Tagion continuously swaps
nodes between the passive and the active pool. Thus, power distribution is always changing,
removing central points of control. Furthermore, Tagion’s utilisation of 2 pools makes the system
permissionless: any node can, without permission, join the network through the passive pool.
These 2 attributes makes the Tagion a fully decentralised system.

14

5 Security

The Hashgraph is an aBFT protocol tolerant to n
3 byzantine faults. The following section

describes how this tolerance is kept when swapping nodes between the active and passive pool,
and the incentive structure assuring security by using time-based staking.

5.1 Time-Based Staking

To join the Tagion Network through the passive pool, participants must stake a minimum fixed
amount of Tagion tokens (TGN). Staking refers to investing some amount of TGN in the network
for a predetermined amount of time4. This ensures node operators have a vested interest in the
network, and also deters malicious actions since penalties can be enforced through slashing
(reduction in staked TGN). The amount of TGN staked, combined with ones seniority (defined
later), determines ones chance of joining the active pool. This is contrast to being swapped out
of the active pool, where the probability is uniform, and does not depend on your stake. This
ensures that while nodes with more TGN participate in the Hashgraph more frequently, their
voting power remains neither stronger nor more enduring than nodes with fewer TGN. This is
contrast to most staking systems, where the amount of staked TGN determines the weight of
your vote. Tagion’s staking guarantees that consensus isn’t unduly skewed by stake magnitude,
promoting a decision-making ethos that prioritises equality and fairness.

5.2 Time and Amount

Your staked amount of TGN fundamentally determines your chance of being selected as an active
node. The probability of joining the active pool increases linearly with every TGN staked. This
method is preferred over a diminishing returns model. The latter could incentivise operators
to launch several nodes, compromising network transparency by suggesting the system is more
decentralised than it truly is. To foster enduring commitment among node operators and promote
long-term stability within the network, Tagion utilises seniority. Those who maintain their stakes
for prolonged periods, while continuously operating a node supporting the network throughout,
are granted heightened seniority. This seniority enhances the probability of joining the active
pool.

4It is also possible to restake ones staked TGN after this predetermined period ends. This, though, comes with
the cost of losing some seniority (defined in a later section)

15

Figure 6: How seniority affects the probability of becoming an active node

The seniority probability multiplier follows an increasing S-curve. Initially, the probability
of joining the active pool is purely determined by the amount of TGN staked. During the first
15 months, seniority gradually increases having some influence on probability. The following 15
months seniority increases more rapidly, effectively doubling the probability of joining the active
pool through the first 30 months. Afterwards, the growth of seniority gradually diminishes and
plateaus after 60 months at which point ones probability has tripled. This only holds if one
has actively participated in the network throughout ones staking period. If a node regularly
fails to communicate and engage in the network, it will be penalised through slashing. By
making it plateau, it sets an upper cap on accumulated seniority, ensuring that power isn’t
disproportionately concentrated, keeping the decentralisation of the system. In summary, time-
based staking fosters long-term engagement amongst node operators.

5.3 Staking Rewards

When nodes are swapped into the active pool during their staking period, they have the possibility
of earning staking rewards. Each epoch, a random node is selected and receives such a reward.
To incentivise fast communication and engagement, nodes receiving a reward are only chosen
among famous witness nodes (an algorithmic trait defining nodes engaging actively). Thus nodes
are encouraged to both receive and send data to make the Hashgraph to run as fast and smoothly
as possible. To further increase this incentive, nodes only receive their rewards when they are
chosen to leave the active pool. This motivates continuous engagement throughout the time in
the active pool, and nodes willingly swapping back out of the active pool. The rewards can either
be paid out to the node operator, or added to the nodes currently staked TGN. To discourage
operating many smaller nodes, staking rewards are increased slightly for nodes with more staked
TGN. Otherwise, splitting ones stake into 2 pools of half the size, would result in better rewards,

16

since it allows one to have multiple nodes in the active pool simultaneously.

5.4 Sybil Attacks

Establishing a minimum staking threshold is a strategic move to curb the threat of Sybil attacks,
where a single entity spawns multiple nodes to gain undue influence over the network. If the
staking threshold is set too low, a malicious actor with many TGN might flood the system with
nodes, posing a risk to the consensus process. To illustrate: When the staking limit is 10 MTGN
(mega TGN, 1 million TGN), an individual holding 250 MTGN can only deploy 25 nodes. This
is far from sufficient to pose a threat to the system. Conversely, if the staking threshold was
lowered to 1 MTGN, they can deploy up 250 nodes. By elevating the staking requirement, the
network limits the potential for single entity dominance, ensuring a more secure and decentralised
system. However, if set too high, the threshold may dissuade individuals with fewer TGN from
participating in the validation process, effectively centralising the network. The staking threshold
thus needs to be large enough to prevent sybil attacks, but small enough to not dissuade smaller
actors.

5.5 Byzantine Fault Tolerance

For the proof of the byzantine fault tolerance of the Hashgraph consensus protocol we refer
to [1] or the more accessible [5]. We want to show that Tagion’s swapping, built on top of the
Hashgraph consensus protocol, does not remove the byzantine fault tolerance of the protocol. We
need to show that swapping neither removes consistency nor liveness. In either of the previously
mentioned proofs, the consistency of the protocol holds through swapping. As long the active
pool consists of less than n

3 byzantine nodes, the state will remain consistent across nodes.
Swapping does not influence this. The more interesting property is the liveness of the protocol.
If a message from any node is delayed until after it is swapped out of the active pool, the message
will not be delivered in the standard way: The network saves which nodes which have not sent
an exit-bullseye in the DART. This is an acknowledgement that the node is aware that this is
the last message it sends before being swapped out. If a node has not yet sent such a message,
the active pool will receive one final message from this node, even though it is in the passive
pool. This node will thus try to send its exit-bullseye to any node in the active pool. If the
receiver is a malicious node it might ignore the message. But, the passive node can keep sending
its exit-bullseye to different nodes, until it can confirm that it has been accepted in the network.
In theory, all nodes in the active pool it sends to could subsequently be swapped out, but after
a certain amount of time every node in both the active and passive pool will have received the
message. So, a node in the active pool following protocol will eventually receive the exit-bullseye
of this node, in combination with its final unsent payload. It will then gossip this to the rest of
the network. Thus, every message sent by a node following protocol will eventually be placed in
the consensus order; The Tagion ABP is live.

17

6 System Architecture and Incentive Structure

The previous sections have described how Tagion solves the trilemma by utilizing its unique
features. While the previous sections have delved into specific parts of the system, the following
section gives a broader overview of the system as a whole.

6.1 Tagion from a User Perspective

If a user wants to use the Tagion system, the message must be communicated to one of the many
nodes of the Tagion system. It is possible to build a relay system on top of the network, to make
sure user messages are evenly distributed. A message can be anything from a transaction to a
smart contract (a piece of executable code)5. The user must prove that its message is valid; that
he owns the money he is using, or owns the file he is deleting. To do this the user submits a
signature together with the message.

Figure 7: How a message flows from the user, until there is consensus about it in the network.

When a node receives a message it checks that the message is valid, and that the signature
gives the correct permissions. If the node forwards an invalid message it will be penalized by
the rest of the system, so it is incentivised to check the validity of the users message. When this
check has been done, the node saves the user message in pending changes. As the network runs,

5All things in the network are technically smart contracts. A transaction is just a piece of code telling the
system to move tokens from A to B.

18

gossip about the message spreads throughout the network. Whenever the message reaches a new
node it does the same validity checks, and adds the message to its local pending changes. After
some time, the message has spread to all nodes. When an epoch happens where every famous
witness (actively participating) node has heard of the event, the event is permanently ordered
with respect to other events. This allows the system to make a final check for double spending
(that you have not spent the same bill twice) before it permanently writes the message from the
pending changes into the DART. At this point the message has achieved finality: The message
is registered, ordered, and is mathematically certain to never be overridden. The following two
sections zooms in on what happens on a low level from a node perspective. Firstly, when nodes
receive messages, and secondly, when epochs occur.

6.2 Node POV: Receiving Information

Nodes can receive information in two ways: Either from gossip inside the Hashgraph, or from user
input. Gossip is transferred through the Wavefront Protocol described in section 3. Scalability,
and user input is just sent directly to the node. Either way, the received data is handled the
same. The node passes the information through the execution pipeline. This module reads the
input of the different smart contracts from the DART. It uses this to check the validity of the
provided signature, and the passed message is valid in general. Once the messages has passed
all the tests, they are executed in the Tagion Virtual Machine (TVM). This virtual machine
executes the smart contracts and adds the output of these to the pending changes. Note how
the storage layer of the system is separated into a structure (the DART) outside the consensus
layer.

Figure 8: A technical close-up of how nodes handle receiving information.

19

6.3 Node POV: Epoch and Consensus

Epochs occur continuously as the consensus protocol runs, and is when events are finally and
irreversibly agreed upon. Once an epoch occurs in the consensus protocol (the Hashgraph) this
epoch is passed into an ordered execution. This module orders all the events contained in this
epoch, and checks for double spending. It then passes all valid outputs to the DART. The DART
deletes all inputs of the executed smart contracts, and writes all outputs of the smart contracts.
At this point, all valid smart contracts have been executed on the DART. Once this has been
done, a bullseye representing the state of the system is computed. This bullseye is then signed
and gossiped to the rest of the nodes. This allows nodes to check their local DART against
others, making sure the system is running smoothly, or figuring out if it has made a local error
itself.

Figure 9: A close-up of what happens when an epoch occurs.

6.4 Comparison to Blockchain Systems

Blockchain systems fundamentally tie the consensus layer to the storage layer. The longest chain
of stored data is what defines the consensus. Tagion is fundamentally different. In the Tagion
system, the consensus algorithm and the storage layer are distinct parts. The consensus occurs
in the Hashgraph, and the data is stored in the DART. This structure allows us to make the
consensus layer, and the storage layer, separately much faster than they could be when jumbled
together. This is what really allows Tagion to achieve scalability, without compromising on any
parts of the trilemma.

20

Glossary

bullseye The merkle root of the DART, that is, a single hash representing the state of the entire
Tagion system. 11, 12, 17, 20

finality An attribute of a DLT-system where once a message is ordered its order never changes.
A weaker form of (deterministic) finality, is probabilistic finality where the probability of
the order changing goes toward 0. 9

liveness An attribute of a DLT-system that ensures the system continues to operate and make
progress, even in the presence of faults or adverse conditions. 9, 17

trilemma The challenge of simultaneously achieving security, decentralisation, and scalability
in a DLT system. 1, 3, 18, 20, 21

Wavefront Protocol The communication protocol Tagion uses to achieve asymptotically min-
imal communication complexity. 7, 8, 21

Acronyms

aBFT asynchronous Byzantine Fault Tolerant. 1, 3, 5, 6, 9, 15

ABP Atomic Broadcast Protocol. 5, 6, 17

DART Distributed Archive of Random Transactions. 1, 3, 9–12, 14, 17, 19–21

DLT Distributed Ledger Technology. 1, 3, 4, 21

SMT Sparse Merkle Tree. 11

TGN Tagion tokens. 4, 15–17

TVM Tagion Virtual Machine. 19

UDR Unpredictable Deterministic Random. 11, 14

List of Figures

1 How Tagion uses its 4 distinguishing features to solve the trilemma. 3
2 An example of the Hashgraph stored locally by a node. The transparent lines and

circles represent events the local node is not yet aware of. 5
3 How the Wavefront Protocol works. Node A and B each has a wavefront repre-

senting what they know. By sharing and comparing their waves they can send
exactly what is necessary. 7

4 The structure of the DART database . 11
5 Tagion is made up of 2 pools: an active pool of constant size where the consensus

protocol takes place, and a passive pool of dynamic size. 13
6 How seniority affects the probability of becoming an active node 16
7 How a message flows from the user, until there is consensus about it in the network. 18
8 A technical close-up of how nodes handle receiving information. 19
9 A close-up of what happens when an epoch occurs. 20

21

References

[1] LEEMON BAIRD. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault
tolerance. SWIRLDS TECH REPORT, 2016.

[2] Binance. What is the blockchain trilemma? Binance, 2022. Accessed: 2023-08-28.

[3] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[4] Michel Rauchs, Andrew Glidden, Brian Gordon, Gina C. Pieters, Martino Recanatini,
François Rostand, Kathryn Vagneur, and Bryan Zheng Zhang. Distributed ledger technology
systems: A conceptual framework. Cambridge Centre for Alternative Finance, pages 12, 19,
August 2018.

[5] Vinesh Sridhar, Erica Blum, and Jonathan Katz. Musings on the hashgraph protocol: Its
security and its limitations. arXiv, 2022.

22

	Introduction
	Misconceptions about Distributed Ledgers

	The Atomic Broadcast Protocol
	The Hashgraph
	Gossip about gossip
	Byzantine Fault Tolerance

	Fair Ordering
	The Wavefront Protocol
	Communication Complexity

	Scalability
	Writing Information
	Reading Information
	The Problem with Blockchain Systems
	The Hashgraph's Solution - Finality
	Using Finality to Achieve Read-scalability

	DART
	Structure
	State of the System

	A Stateless Scalable System

	Decentralisation
	Node Pools
	Swapping
	A Permissionless System

	Security
	Time-Based Staking
	Time and Amount
	Staking Rewards
	Sybil Attacks
	Byzantine Fault Tolerance

	System Architecture and Incentive Structure
	Tagion from a User Perspective
	Node POV: Receiving Information
	Node POV: Epoch and Consensus
	Comparison to Blockchain Systems

